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Up to now, the growth rate of a craze
has been considered either constant or inversel]
proportional to time. By taking into consideration
the effect of the surrounding population of crazes,
it is found that the craze growth rate is affected
by the local effective stress acting in the vicinity
of the craze. Measured data of craze length as a
function of time are found to be greatly affected
by local interactions.
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I. INTRODUCTION
n i n

In response to a tensile stress glassy polymers can exhibit

crazing which is a phenomenon of considerable practical and '!

theoretical importance in the use of many plastics. Since the

first important paper [i] dealing with the craze was published, I"I

a great de_.l of knowledge has been accumulated on the development i
i i

•of crazing in glassy polymers in a tensile stress field [2-9]

!
For predicting craze growth in polycarbonate, Verheulpen-Heymans _i

i
and Bauwens [7] have presented a two-dimensional model for craze ,

growth They obtained that the craze length varies linearly with _I• ii

i!i
respect to the log of time and hence craze growth velocity de- i

creases as time increases, in good agreement with their experi- I

mental result under constant uniaxial tensile load. Argon et al
i
i

[8] have proposed new mechanisms for craze initiation and growth• ',

In their model, the craze growth velocity is assumed to be pro-

portional to the constant craze tip opening velocity. Then they

conclude that _he craze length increases linearly with time. They

also get good agreement between theoretical and experimental results

on PMMA and PS. '_

It has been pointed out that both of the above models were

somewhat similar in _tany ways and contained similar l_uitations.

While they satisfy specific data but are incompatible and _

neither are capable of predicting the effect of craze interactions _!

[lO].

_ _.;_, Recently, a time dependent theory of crazing behavior on ,,_
p*

polymers [Ii] based upon linear viscoelasticity theory and first !_

law of thermodynamics for predicting the craze length as a function
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of time, has found that a craze may propagate with increasing

vslocity for a thin sheet of viscoelastic medium which contains a

single craze under uniaxial creep conditions.

It is difficult to draw conclusions for one against the

others, because there are several potential sources of discrepancy

among the results of [7], [8] and [ii] such as tensile stress

applied, material used and environment exposed. However, an

important factor which may dominate craze growth behavior is the

interaction Of the neighboring crazes, i

In this paper, an attempt is made to demonstrate how craze :_
1

growth behavior is affected by the craze density (which is de-
I

fined as the total number of crazes per unit surface area) i

surrounding that craze. The measured craze length as a function of _ii

time will be compared with some calculated results of PS at room

temperature.

i. !



I

II. EXPERIMENTAL,-- ,- i

AS shown in Figure 1, the development of multi-crazes in

a simple tension specimen is usually on the surfaces of the speci-

men. In order to measure the changing length of the crazes, an

experimental set up for determining the craze tip position and

thus the craze length as a function of time is constructed.

Sheet specimens of polystyrene with _ neck region have been

cut and secured onto the clamps of a creep testing machine for

loading. As shown in Figure 2 while the specimen was being

--, stressed, a microscope was used for viewing the surface conditions

=!_ of the stressed specimen. Using a He-Ne laser the surface crazing

_ was projected onto an image screen for observation and measurement.

--_ All the creep tests were conducted at a constant room temperature

of 21"C under a constant applied load. Usually a short period

of timeelapsed before crazes occurred. Starting at this craze

"_ initiation time the craze lengths were monitored. The craze lengths

were enlarged 400 times and measured to 0.i mm at regular intervals

with the aid of a travelling microscope.

The eight inch-long specimens were cut from a 10-mil thick

_ biaxially oriented polystyree sheet. The gage section was half i
,i J

- inches wide and two inches long. Under load after inception of

_i_I• crazing, the number of crazes (per unit area) as well as the '_

lengths of individual crazes were observed to increase. Figure

3 shows the total number of craze per unit area as a function of

time for a typical specimen under the load corresponding to a
ii

creep stress of 34.4 N/mm 2 at the gage section. Figure 4 "

shows the increase in the individual craze lengths as time increases.
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i Biaxially oriented polystrene specimens were used because of

the ease of developing the crazes. The density of the craze was

i, found to be adequate for quantitative considerations. During the

I "course of this investigation sufficiently large areas have been

!' taken to insure the statistical representation of the crazing

_ behavior. It was recognized that both the lengths and the number

: of crazes increase as a function of time. As shown in Figure 5,

' in a local region, out of many crazes, four were selected for

identifying a common behavior. The craze lengths were plotted

_' as a function of time. The similarity of their behavior is

_._ quite clear. More interesting is that by normalizing the craze

I length (current craze length divided by its initial length) allthe individual curves reduce to a single one. This is shown in

_ Figure 6, a single master curve characterizes the time dependent

:" behavior of all the crazes developed in that region. In other

_ii words" this single master curve represents the typical behavior of

_i_ a family of crazes in a local neighborhood under a specific loading

!! situation as stated earlier.
h

_ •
t

, ,i

'i

i I

i

iil '1
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III. REDUCTION OF THE MULTI-CRAZE PROBLEM
i i | m , i , i l

Among all the parameters describing the crazing phenomenon,

two important ones are the total number of crazes appearing on i

•iJ
the surface of the stressed medium N(t) at time t and the length of

each (ith) individual craze ci(t). The forme_ is associated with

the craze initiation while the latter is related to craze growth.

Both parameters are highly dependent on the viscoelastic behavior

of the media.

In dealing with crazing, like any other physical or mechanics
!

problems, continuum models are utilized. Aside from the regular

field equations such as equations of motion and kinematic relations

the system must obey at all times during the development of crazing

the fundamental principle of the global conservation of energy.

The rate of work done by external forces and all energies that enter

or leave the material body containing crazes per unit time must

equal the t_,e rate of change of the inter_al and kinetic energies

plus the energies associated with the formation of crazes, excluding

chemical, electrical, etc. energies except heat. On this basis the ,,

global conservation of energy per unit time for a crazed visco-

elastic medium containing N(t) number of crazes at any time t
i

becomes ._

i H i

.(t) ,i
_(t) = _.(t) + _(t) + _(t) + T. _i(t), _,_i=l (1) i_

o_'

where W(t) is the mechanical work done by external load, !_,

E(t) is the stored elastic strain energy of the uncrazed i!

portion of the medium, ,i
'i
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i D(t) is the dissipated energy by the uncrazed

i portion of the medium,
|

K(t) is the kinetic energy of the uncrazed medium.
i

i

and

;_ tilt) is the total energy absorbed by the ith craze developed

: in the medium from the beginning of craze initiation

to current time t.

In the case of relaxation it is expected that the external work

i _ done W(t) approaches a constant value initially. The energy required

for the inception and propagation of the crazes comes from the

_ release of the stored elastic strain energy E(t). In the case of

_2 creep both the stress and strain increase and the external work

increases continuously which provides energy for the initiation

_ and propagation of crazing. Each craze is an energy sink which|

absorbs and dissipates energy from its own neighborhood. The energy

_ absorbed _i(t) by the ith craze is characterized by the develop-

ment of the craze through the release of the elastic energy in the
P

surrounding medium.

_ In what foll_ is an attempt to reduce the problem containing

multi-crazes to one dealing with only one representative craze.

Originally the whole specimen is a region subjected to an

external stress u° , the medium is homogeneous, there is no new I

phase created unt_l crazes are developed. After the development I_

of the new phases, subregions may be considered according to the ii
number of crazes developed in that region, ii

At any subregion it appears reasonable to consider that the i!

_i number of crazes developed will be proportional to the energy 1

......... 00000001-TSA08



available in that subregion. If Ue(X, z,t) and Ce(X' z,t) are

respectively the effective stress and the strain rate for the

t_

subregion, the energy available per unit volume at time t will be:

i I

_" It Oe(X,Z,T)_e(X,Z,z)dT.o
, (2)

i _ Since crazes are sources of energy sinks, several hundred times
_ the amount of energy will be needed for the initiation of a single

craze [information will be published elsewhere] as compared with

that for the elastic deformation of the medium of the craze size,

:! essentially the craze density n(x,z,t) in this subregion will be pro-

ii portional to the energy given in (2), that is

it _e (x'z'_)dT_elX, z,T) _ nlx,z,t) .
O

(3)

In the c_se of creep, _ (x,z,t) is a constant after a transiente

period, then differentiation of (3) with respect to time yields:

_; _:e%(X,Z,t) _ _(x,z,t), (4)
t

Or

ae(X,Z,t) _ s_(x,z,t). (5) ,a

t) ,

With this important relation established, the computation of the

i time dependent craze length will be greatly simplified provided that

n(x,z,t) is predetermined.

!
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IV. CONSIDERATIONS O_F CRAZE PROPAGATION !

r
Assuming that each craze has basically the same configuration !

. j

!
as any other craze then by referring to a central fixed (x,z) I

;i

coordinate system, an idealized symmetrical craze in a tensile iI '

local effective stress field _e(t) is shown in Figure 7. By taking !I

into consideration the time dependent nature of both the polymer

medium and the craze, a craze length is designated by 2c(t) at

time t and the time dependent stresses and displacements are

shown in Figure 8. The half vertical distance between the two craze

; surfaces will be called the craze opening displacement and denoted

by w(x,t). The craze fibril domains are formed by continuous

-_': drawing from the unoriented bulk polymer. This drawing process

_ ¢uases the material mass to flow from the original polymer into

-__ a highly oriented new phase. The stress acting on the interface may
=_

: be called the craze envelope stress with notation _c(x,t} which .

is time dependent. The general state of stress in the bulk poly-

mer is designated by u(x,z,t).

The idealized craze structure has been considered as cylindrical

_ domains of fibrils of diameter 6f(x,t), which ma be different

from position to position. During the crazing process the

'i diameter of each fibril domain.may also change with time as its

' t
length changes. Each fiber sustains a stress oflx,t) which may be

different from the craze envelope stress oclx,t). The former

represents the true fibril domain stress while the latter is an _.i

average stress usually referred to as an engJ.neering stress by ;t

taking the fiber domains and the voids altogether into consider- !__

ation. Thus the ratio _f(x,t)/ac(x,t} = A(x,t) equals the draw

ratio of the fibril domains within any craze. Its inverse is the

ke
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i, volume fraction Vf. The actual flbrll distribution density

function nf(x,t) is defined as the number of load bearing

fibrils passing through a normal unit area in the craze plane at

time t. The volume fraction of fibrils Vf(x,t) inside an

individual craze is equal to _ 6_(x,t)nflx,t).
!

_. The absorbed energy _(t) nucleates and creates fibril domains

near the craze tip and transforms more material mass from the

original phase into the new phase of oriented fibril domains,

/i void formations and further deformations as well as possible

_i: microfractures of the highly oriented fibrils. The local

i energy balance equation per unit time for a craze at time t

may be expressed as an energy rate balance equation with dot

representing tb_ time derivative:

_(t)= _clt)+ _(t) + 6flt)+ _flt)+ iflt), 16)

where Fc is the energy required to nucleate the fibril domains

near the craze tips,

rf is the total surface free energy of domain fibrils

contained in the craze,

Df(t} is the total dissipated energy contained in the domain

of fibrils of the craze, i

Ef(t} is the stored strain energy contained in the domain i

of fibrils inside the craze, i

and ! ' ,

Kf(t) is the kinetic energy of the domain of fibrils

contained in the craze.

_ " - ....._ O0000001-TSAll
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AssociQtod with any craze, Pf, Dr, E£ and K_ can be expressQd

in terms of morQ elementary parameters as followQ:

o(t) '
@

Yf(t) _ 4 Jjf(x,t)yfnf(x,t)w(x,t)dx. .

c(t)

Eflt) = 4 o_ 6 (x,t)eflx,tlnflx,tlwlx,tldx.

c(t)

Dflt) = 4 oF 6 ;(x,tldflx,tlnflx,tlwlx,tldx.

c(t)

III 2 t)kflx,t)nflx,t)w(x,t)dxKf(t) = 4 Oi _ (x,

where yf is the surface free energy per unit surface area of the

fibril domain, this energy density is assumed to be a

material constant.

ef, df, and kf are respectively the elastic strain energy, the

dissipative energy and the kinetic energy per unit volume of

the fibril domain.

Since the fibril domain nucleation rate at the craze tip must be

proportional to the craze growth velocity c(t), hence the energy

required to nucleate the fibril domains near the craze tip per unit

time becomes:

wp

= &(t). (?)c c

i

where Bc is assumed to be a constant. ,+,:+.

ii The energy absorption rate of a craze _(t) can be

obtained by performing integration of the product of the

craze envelope stress uc(x,t) and the craze opening velocity

00000001-TSA12
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_(x,t) along the craze length, l.n.

clt)

I _w(x,tl
_(t) = 4 (x,t) dx

0% _t (8)

Taking the derivatives of £f(t), El(t), Dr(t) and Kf(t)

and combining with 16), (7) and (8), one obtains the following

equation which governs the individual craze length c(t) as a

function of time t:

clt)
_wlx t)[{o lx t) ' -

: Jo c ' 8t _-_ [Bf(x,t)Vf(x,t)w(x,t)]}dx

_,_!_.. =13c,_(t I. 191
_-'

.:_._-: where

_i Vf - 6 lx,tlnlx,t). 1101
L.

and

_ 4_f
L Bf(x,t) = ...... + [eflx,t) + df(x,t) + kf(x,t)]. '

6fix t) 1111
!

Equation 191 is a nonlinear differential-integral equation of

il c(t) involving five parameters oc, w, Vf, _f and Bc which form

: ' the basis to characterize each individual craze. This equation

is not only describing the steady=state craze growth, but also
,i

• governing the craze-crack transition. Once a crack is formed

within the craze, (9) can be used to predict the crack prop-

• agation as a special case.

'_ O0000001-TSAI3
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Amonq all the parametera involved in equation 19), moat of

them are associated with _ntrins_c material proportie_ which are

!.. insensitive to the geometry of the craze and to the interaction

Of neighboring crazes. For example, at the time well before craze-

; crack transition, to a first approximation, one may assum_ that

.. the load-bearing fiber volume fraction Vf(x,t) and the fiber diameter

6f(x,t) are constants both in position x and time t during crazing

process. It may also be assumed that the kinetic energy Kf,

dissipative energy Df and the elastic strain energy Ef are negligible com-

pared with the other energy term, namely the phase transformat4on energy

_; 4yf/_f. Then (9) reduces to the following form:

[clt) t)ax
_: " 6c'C(x't) = -o h(x,t) _ , (1;_

_2; where

. h(x,t) _ eelX,t) - BfVf, 117) ;

__ and

_ yf

-_ which may be regarded as the energy required to rearrange a unit

volume of the original medium into the new phase composed of oriented

i fibril domains. Equation 1121 has the meaning that the craze growth

_ rate c(t) is proportional to the weighted average of the craze

_ opening velocity w(x,tl with weighting function h(x,tl as defined
J

i_ in (13) . Physically (12) may be visualized as the craz_ growth
E

criterion derived from the first law of thermodynamics Therefore,i ®

_ it is not surprising that 1121 should be more general than the

craze growth criteria used in [7] and [8]. As we have mentioned

O0000001-TSAI



-14- _i
4

• ii
k

I
earlier in the introduction of this paper, Verheulpen-Heymans and

Bauwens [7] obuained their craze growth criterion by assuming that

the ratio of the craze opening at center (x = o) to the craze
'I

length c(t) be kept constant during the crazing process. This can
i

be _xpressed in the following mathematical form in tezms of our

terminologies:

w(o,t)
c(t) = 71 = constant. (14)

By taking the derivative with respect to time t, one can

rearrange (14) in the form:

= ¢q(c,t). (15)

Comparing (15) with (12), one can easily see that (15) is a

special case of (12) when the weighting function h(x,t) in (12)

is reduced to:

h(x,t) - a(x), (16)

where _(x) is the Dirac-delta function.

On the other hand, in order to take the strain rate behavior

into consideration for the craze growth criterion, Argon and Salama

[8] assumed that the craze growth rate is linearly proportional

to the strain rate of the craze at the position a(t) which is at

soma point between the center x = o and the craze tip x = c(t).

This can also be expressed as follows:

y2c(t) = w(a(t),t), o < a(t) < c(t), (17)

where _2 is a constant, i!

,I
I

00000001-TSB01



r!

-15- I

Once again (17) is seen to be a _pecial case of (12) simply i
by taking the weighting function h(x,t) as a delta function that I

i

ii
h(x,t) = 6(_(t)). (18)

i

J

NOW equation 1121 is a nonlinear differential-integral functional ii
equation of the form [see Appendix A]: i

I
,I

f(clt), c(t), Go, 8c, Bf, Vf, J(t), t) = 0 119)

which is applicable for any specific applied stress Go. Among

all the arguments, c (t) and _ (t) are being sought, go can be

_: selected, Bc, Bf, and Vf must be experimentally determined,

J(t) can be measured and t is an independent variable. Other

qualtities such as w(x,t) must be obtained first before c(t) is

evaluated. Some further considerations are also given below in

connection with the analysis of this craze propagation.

-- O0000001-TSB02
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V o FURTHER C_ONSZDEP__TIONS OF CRAZE PROPAGATION

In order to obtain c(x,t), w(x,t) in (12) must be obtained

first. To determine w(x,t) the field equations governing the

quasi-equilibrium and compatibility conditions must be solved

together with the constitutive behavior of the viscoelastic

media subject to proper initial and boundary restrictions.

Using the classical correspondence principle developed in

linear viscoelasticity and molecular orientation theory [12] the

craze opening displacement for a single craze in viscoelastic

medium has been presented previously [11] and the results will
_q i

..... be recalled briefly here:
i:

_-: wlx,t) = _ [CblOl,(x,t) + _(x,TldT], (20)
5,:

.J,._

. where

_' 2 c(t)ng(n't) dn, ,_- %(x,t) =- (21) '

i

n Oeltl - oclx,t) }- g.lr_,c) = .. - _x , i
0 /111z_Xl ) ' 1221 i

il and

i

Cb(t) -_'_ l-sZV* ii
_: s2glS) sagls) ' 1231 i!

, in which the bar denotes the Laplace transform of a function _._,.

iof time, into a function in the LaPlace domain in s, i.e.

-" I:e-stF It)

.i
i _(sl = dr, 1241 ,-,_

---4

............................................. O0000001-TSB03
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where -t denotes the inversion of the Laplace transform and v,E

are respectively the Poisson's ratio, and the elastic modulus of

the original unoriented bulk polymer. A is the natural draw

ratio of the craze fibril domain.

The craze envelope stress _c(X,t} in (22) usually depends

upon both position and time. Based upon a number of previous

results [9, 11, 13], the stress oc(x,t) to a first approximation

can be taken as follows:

%(x,t) = al(t) for o <_ Ixl < a(t)

Oc(X,t) = _2(t) for a(t) <_ Ixl < c(t). (25)

where a(t) separates the stresses Ul(t) and u2(t) which are both func-

tions of time. It has been shown that the use of the two-step stress i

distribution [9, 11, 13] results in excellent approximation as compared

with actual findings. I
In addition, the introduction of step functions in the stresses

should reduce tremendously the mathematical complicities and computa-

tions. This has been evidenced by the recent report on a time

dependent theory of crazing behavior in polymers [11].

Because the craze envelope stress a (x,t) must balance the
c

effective stress Oe(t) at all times in such a way that the _
i!

stress field within the uncrazed medium is finite everywhere

i!
(i.e. there are no stress singularities), then alt) can

be determined by the following condition[ll]- I_

!.,clt) %Ix,t)
n ,

_ (t)-x _)'/_ dx _e(t)" _I.
o (2e) ;i

-- !i

:ot

m O0000001-TSB04
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By considering ol(t) and u 2(t) as follows:

ol(t) = _lOe(t),

I

02(t) = _2Oe(t), (27)

where _i,_2 are constants, indeed the solution of (12) is

. greatly simplified. According to the experimental results

in PS the stress al(t) is about 10% below the applied stress

i along the majority of its length and 15% above the applied stress
+

_ for o2(t) around the craze tip [14].

Substituting (27) into (26) and solving: i

,-+_ a(t) = c(t)cose, (281
12

!o

+:. wh_re

oe It)-o I (t) 1-_ 1

With respect to the time dependent craze density n(t) based

upon experimental measurements at the location where craze lengths were

monitored, the following equation was found to be quite adequate _or

representing the craze population as a function of time:

n(t) = A(l-e'Bt). (30)

where A and B are constants. For polystyrene, referring to

Figure 3, A was found to be 78 and B = 0.4. +.i

'1
According to the linear relationship between the effective !_

stress Oe(t) and n(t), [see Equation (5)], the following equation can +_

be established for creep:

....... " oooo0o0............+.... 1-TSB05
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ae(t) = Ce "Bt + D (31)

where C and D are again constants determinable by the initial

! condition that ae(0) = aO, and that the weighting function in (13)
i

must be positive definite. On this basis, C has been found to be

4.7 N/ramz and D = 29.7 N/ramz, for polystyrene under the tensile

stress aO = 34.4 N/mm _. This reflects the correct physical

picture that initially no craze exists and the medium is homogeneous.
I

i

After crazes develop the craze envelope stress ac(X,t) must always

_ be greater than the craze transformation energy BfVf as shown in (13).

_i' Otherwise craze will not occur or propagate.

_ Apparently, information concerning the intezactions among

neighboring crazes can be effectively taken care of through the

application of the effective stress ae(t) as a function of therate of change of the local craze number.

i

t

"' i

1 ,

!
!-

i,

O0000001-TSB£
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VI. RESULTS
ti - "
[
I

_ Using computer aJ.ded numerical methods (AI5) a reduced form of

i!_ (AI) or (19) or (12) has been solved. For polystyrene, only
Ii
Ii: three constants are now needed. They are
_

I _c = 0.7 x 10_6 J/ramz

<_ Bf =
0.112J/re'

and Vf = 1/4

These values are obtained on the basis that _f = 15 nm, 7f = 0.42.10 -s

J/mmZand A = 4 which have been experimentally found [15]. Note that

Vf --I/A. Using these together with the creep compliance J(t} as

determined in (B2) Appendix B, the following results have been obtained.

The craze envelope stress distribution _c(x,t) for

polystyrene is given in Figure 9 for a specific craze of length

just below 150 _m. Based upon various considerations, as

stated before, a fairly accurate craze propagation behavior :

should prevail if all the subregional crazes are consistently

stressed. Indeed this is the case, the computed time dependent

craze length is given in Figure I0 in which one normalized curve

is shown to represent the typical craze length-time behavior. Com-

pared with the experimental data as shown in Figure 6, a fairly good

agreement with the calculated results is obtained. _14

It may be quite significant that the time dependent single i_
r,l

craze length in a viscoelastic medium has been found to propagate

to infinity in a finite time if only one craze is considered [ii].

I

00:001 07
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According to the current analysis, when craze interactions are

taken into consideration, however, the craze length as a

function of time propagate to a finite value as time goes to

infinity.
!
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I VII. DISCUSSION, i, i i

(1) Craze Propagation

_ The craze propagation computed analytically agrees fairly

well with the experimental results (Figure i0). It was found that

i the craze growth is decelerated with time. This means that the

_ craze length increases with time and its velocity decreases
!

!_ with time. From Equation (12), it is observed that craze arrest

I_ (c = 0) when either = aw(x,t)/at = 0.

occurs
OC BfVf

or

i The former occurs when the energy absorption rate by crazing is

used up for drawing new fibrils out of the matrix, while the

_ latter is possible only if molecular entanglements enhance the stiffness
_!i_ of the fibril domain such that further opening becomes difficult.

(2) Craze Number

As shown in Figure ii it was found that the number and

length of crazes developed in creep are strongly dependent on the

magnitude of the external load. At high stresses a large number
i'

of small crazes become visible after a relatively short time,

_i while under small stresses a small number of large crazes become

visible after a long loading time.

(3) Local Effective Stress and Rate of Craze Number

It is interesting to note that the local effective stress is

linearly associated with the rate of change of the local craze

number. This relationship seems to be quite useful for analyzing I.

craze interactions.
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I

i APPENDIX A
|

I

On Craze Len.gt.halt)
i , i ml

By substituting 125) and 1271 into 112) one obtains: I

a(t)
I

[ @w(x,t) _ .[ala e(t) - BfVf] o @t dx I

c (t)

_w( t)
+ [a2Ce(t) - I_fVf] t,) _ dx = _c&(t).Ja ( (A1)

,4

r Further, by substituting (25)and(27) into (21)and(22), ¢(x,t) is

_. found as follows:

1
_' ¢ (x,t) = Fla2-_l) Celt ) [(x+_c(t)lcosh -Ic (tl+y x

x+ _(t)

i

- (x-yc(t))cosh -I c(t)-_-]
_-D_c-_., (A21

where

L

y = cose,

. ¢(x,t) I = (_2-all°e(tlc(t)I2"_' x=a (t ) (A3)

with

2
12 = _ cose In sece. (A4)

' _ I PI,

O0000001-TSBIO
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faltl¢(x,t)d x = (a2-allOe(tlcZ(t)i1,o (aS)

where

8 2.in seeS). (A6)• II = cosZ8( tan8 - _ tan8 +

ic(t)
¢(x,tldx = (_2._i)Oe(tlCZlt)i3, i_. a (t) (A7)

_i-_' where

_:'I:T 13 = 1
_!: _ cosZe(etane - 2 in secel. (A81
_ i

_i_

--_ [a(tl
_-I d

_i_:i a'6 -o ¢(x,t)dx = (_2-_i I [_e(tleZ(t) + 2ae(t)c(tlc(t)]i 1,

_.'i (A9)

' d (c(tl

_;" a-t Ja(tl¢(X,tldx = (_2-_11 [Oe(tlcZ(t I + 2Oe(tlc(tl_(tl]i 3 .
,, (AI0)

_ Using the above results and (201, one gets the following:

i o _t_ = _ ([cb(01zl_e(tIe'(t)+ Cb(0) (2II-I2)Oe(t)c(t)_(t) + Cb(0)IlOe(t)oa(t)].

i (_2-=lI+ Rl(tI},

(All) r

i"o

O0000001-TSB] ]
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I fc(t) w(x,t)dx =

a(t) _t _ [ [Cb(0) I3_e (t) cz (t)

. + Cb(0)(213+I2)ae(t)c(t)_(t) + Cb(0)I3Oe(t)cz(t)] (a2-ml)

_ �R2(t)}' (A12)
where

Rl(t) = /a(t) it (t-T) (x,_)dTdx• Jo o b ¢ ' (A13)

R2(t) = (t-T)¢(x,T)dTdx, (AI4) ,
a(t) !_

and I is the fibril draw ratio. Substituting (All) and (AI2) into i

(A1), finally one obtains:

Kl(t) c a(t) + K2(t)_(t) =
8c-K 3 (t) C (t) (A15)

where

J

_T " 6b(0)K1 It) = (a2-_11[Cb101% It) + % (t)]. i

[IlL l(t) + I3L 2(t)] (AI61

K2lt) = [LlltIRl(t) + L2ltlR2(t)] (AFT) i

,!

K3lt) = X-/Tla2-allCbl0l[(211.i2lLllt) + (213+I2)L2ltlloelt), i

(AlS) ii,

L1 It) = _lOeIt) = 8fVf, (AI9)
!

L 2(t) = a2o e(t) - 8fVf. (A20) !

1

IN mn _

O0000001-TSB12
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• APPENDIX B

on c=eepComBl 9-ce.J(t) I

Before any calculatlon can be accomplished, the constitutive

behavior of the medium in creep mu_t be obtained and properly ,,

represented for computation. ,i

Taking the experimental polystyrene sheet as an example,

Figure 12 shows the experimentally measured creep compliance J(t).

The quantity Cb(t) is closely related to this creep compliance.

By assuming lot polystyrene that the Poisson's ratio v = 0.395,

a constant, then

2 (l-v:)J (t).
s2E(s)

(B1)

For any arbitrary times, a very good approximation may be obtained

using a linear viscoelastic spectr=_ fermi16]:

m

J(t) = J0 + _=iJi (l-e-t/Ti) (B2) i

where Ji'S and Ti's are respectively constant material compliances i
il

and retardation times. With the measured creep compliance curve

available, these quantities can be obtained using a curve fitting
4

technique. ,

For polystyrene under the creep stress oo = 34.4 N/nun , the i

following data are £ound to represent a close Sit: :!

O0000001-TSB13



I". = 4 ji, _ Tl"_

Jo = 0.307 × 1G-_ imn_/N r I _ 1.0/h,

al _ 0.071 x 10 -0 nml*/N T 2 _ 10.0/h,

J2 _ 0.062 x 10-_mm:_/N T3 _ 80.0/h,

J3 = 0.045 x i0-s rnm_/N T4 = 110.0/h,

J4 = 0.031 x 10 -smmS/N

1

m

O0000001-TSB14
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